Tailoring Macromolecular Structure of Cationic Polymers towards Efficient Contact Active Antimicrobial Surfaces
نویسندگان
چکیده
The aim of this work is the preparation of contact active antimicrobial films by blending copolymers with quaternary ammonium salts and polyacrylonitrile as matrix material. A series of copolymers based on acrylonitrile and methacrylic monomers with quaternizable groups were designed with the purpose of investigating the influence of their chemical and structural characteristics on the antimicrobial activity of these surfaces. The biocide activity of these systems was studied against different microorganisms, such as the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Pseudomona aeruginosa and the yeast Candida parapsilosis. The results confirmed that parameters such as flexibility and polarity of the antimicrobial polymers immobilized on the surfaces strongly affect the efficiency against microorganisms. In contrast to the behavior of copolymers in water solutions, when they are tethered to the surface, the active cationic groups are less accessible and then the mobility of the side chain is critical for a good contact with the microorganism. Blend films composed of copolymers with high positive charge density and chain mobility present up to a more than 99.999% killing efficiency against the studied microorganisms. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2018 doi:10.20944/preprints201801.0249.v1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. 2
منابع مشابه
Multilayers of weak polyelectrolytes of low and high molecular mass assembled on polypropylene and self-assembled hydrophobic surfaces.
Hydrophobic self-assembled octadecyltrichlorosilane (ODTS), ultrathin films of polypropylene, and ODTS modified with cationic dioctadecyldimethylammonium bromide are employed as substrates for deposition of multilayers of poly(allylamine hydrochloride) and poly(acrylic acid) from aqueous solution. The assembly of highly dissipative polyelectrolyte multilayers (PEMs) is demonstrated by quartz cr...
متن کاملCationic Antimicrobial Polymers and Their Assemblies
Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium c...
متن کاملTruly nonionic polymer shells for the encapsulation of living cells.
Engineering surfaces of living cells with natural or synthetic compounds can mediate intercellular communication and provide a protective barrier from hostile agents. We report on truly nonionic hydrogen-bonded LbL coatings for cell surface engineering. These ultrathin, highly permeable polymer membranes are constructed on living cells without the cationic component typically employed to increa...
متن کاملMolecular design, structures, and activity of antimicrobial peptide-mimetic polymers.
There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria ...
متن کاملAntimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles
The control of microbial infections is a very important issue in modern society. In general there are two ways to stop microbes from infecting humans or deteriorating materials—disinfection and antimicrobial surfaces. The first is usually realized by disinfectants, which are a considerable environmental pollution problem and also support the development of resistant microbial strains. Antimicro...
متن کامل